Elucidate

Blog just for my science interests, keeping my personal life outta this one. Nothing I post is my own unless otherwise stated.
Recent Tweets @
neurosciencestuff:

Depressed? Researchers identify new anti-depressant mechanisms, therapeutic approaches
Researchers at UT Southwestern Medical Center are making breakthroughs that could benefit people suffering from depression.
A team of physician-scientists at UT Southwestern has identified a major mechanism by which ghrelin (a hormone with natural anti-depressant properties) works inside the brain. Simultaneously, the researchers identified a potentially powerful new treatment for depression in the form of a neuroprotective drug known as P7C3.
The study, published online in April’s issue of Molecular Psychiatry, is notable because although a number of anti-depressant drugs and other treatments are available, an estimated one in 10 adults in the U.S. still report depression, according to the Centers for Disease Control and Prevention.
"By investigating the way the so-called ‘hunger hormone’ ghrelin works to limit the extent of depression following long-term exposure to stress, we discovered what could become a brand new class of anti-depressant drugs," said Dr. Jeffrey Zigman, Associate Professor of Internal Medicine and Psychiatry at UT Southwestern, and co-senior author of the study.
Ghrelin, a hormone produced in the stomach and intestines, has several widely known functions, including the ability to stimulate appetite. The latest research builds on a 2008 study led by Dr. Zigman, in which the team discovered that ghrelin exhibited natural anti-depressant effects that manifest when its levels rise as a result of caloric restriction or prolonged psychological stress.
The current findings identify ghrelin’s ability to stimulate adult hippocampal neurogenesis, the formation of new neurons, in animal models. In addition, Dr. Zigman and his colleagues also found that the regenerative process inside the hippocampus – a region of the brain that regulates mood, memory, and complex eating behaviors – is crucial in limiting the severity of depression following prolonged exposure to stress.
"After identifying the mechanism of ghrelin’s anti-depressant actions, we investigated whether increasing this ghrelin effect by directly enhancing hippocampal neurogenesis with the recently reported P7C3 class of neuroprotective compounds would result in even greater anti-depressant behavioral effects," Dr. Zigman said.
The P7C3 compounds were discovered in 2010 by a team of UT Southwestern researchers led by Dr. Steven McKnight, Chair of Biochemistry, Dr. Joseph Ready, Professor of Biochemistry, and Dr. Andrew Pieper, a former UT Southwestern faculty member and co-senior author of the current study. Previous research demonstrated P7C3’s promising neuroprotective abilities in instances of Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and traumatic brain injury. Today, researchers hope that it can have a transformative impact on depression treatment too.
"We found that P7C3 exerted a potent anti-depressant effect via its neurogenesis-promoting properties," said Dr. Pieper, who is now Associate Professor of Neurology and Psychiatry at the University of Iowa Carver College of Medicine. "Also exciting, a highly active P7C3 analog was able to quickly enhance neurogenesis to a much greater level than a wide spectrum of currently marketed anti-depressant drugs."
Based on the study’s behavioral findings, researchers believe that individuals with depression associated with chronic stress or with altered ghrelin levels or ghrelin resistance, as has been described or theorized for conditions such as obesity and anorexia nervosa, might be particularly responsive to treatment with highly neuroprotective drugs, such as the P7C3 compounds.
Future studies will examine the ability to apply these findings to other forms of depression, including the possibility of developing clinical trials aimed at identifying whether or not P7C3 compounds have anti-depressant effects in people with major depression, as predicted. The three main types of depressive disorders include major depression, dysthymia, and bipolar disorder.

neurosciencestuff:

Depressed? Researchers identify new anti-depressant mechanisms, therapeutic approaches

Researchers at UT Southwestern Medical Center are making breakthroughs that could benefit people suffering from depression.

A team of physician-scientists at UT Southwestern has identified a major mechanism by which ghrelin (a hormone with natural anti-depressant properties) works inside the brain. Simultaneously, the researchers identified a potentially powerful new treatment for depression in the form of a neuroprotective drug known as P7C3.

The study, published online in April’s issue of Molecular Psychiatry, is notable because although a number of anti-depressant drugs and other treatments are available, an estimated one in 10 adults in the U.S. still report depression, according to the Centers for Disease Control and Prevention.

"By investigating the way the so-called ‘hunger hormone’ ghrelin works to limit the extent of depression following long-term exposure to stress, we discovered what could become a brand new class of anti-depressant drugs," said Dr. Jeffrey Zigman, Associate Professor of Internal Medicine and Psychiatry at UT Southwestern, and co-senior author of the study.

Ghrelin, a hormone produced in the stomach and intestines, has several widely known functions, including the ability to stimulate appetite. The latest research builds on a 2008 study led by Dr. Zigman, in which the team discovered that ghrelin exhibited natural anti-depressant effects that manifest when its levels rise as a result of caloric restriction or prolonged psychological stress.

The current findings identify ghrelin’s ability to stimulate adult hippocampal neurogenesis, the formation of new neurons, in animal models. In addition, Dr. Zigman and his colleagues also found that the regenerative process inside the hippocampus – a region of the brain that regulates mood, memory, and complex eating behaviors – is crucial in limiting the severity of depression following prolonged exposure to stress.

"After identifying the mechanism of ghrelin’s anti-depressant actions, we investigated whether increasing this ghrelin effect by directly enhancing hippocampal neurogenesis with the recently reported P7C3 class of neuroprotective compounds would result in even greater anti-depressant behavioral effects," Dr. Zigman said.

The P7C3 compounds were discovered in 2010 by a team of UT Southwestern researchers led by Dr. Steven McKnight, Chair of Biochemistry, Dr. Joseph Ready, Professor of Biochemistry, and Dr. Andrew Pieper, a former UT Southwestern faculty member and co-senior author of the current study. Previous research demonstrated P7C3’s promising neuroprotective abilities in instances of Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and traumatic brain injury. Today, researchers hope that it can have a transformative impact on depression treatment too.

"We found that P7C3 exerted a potent anti-depressant effect via its neurogenesis-promoting properties," said Dr. Pieper, who is now Associate Professor of Neurology and Psychiatry at the University of Iowa Carver College of Medicine. "Also exciting, a highly active P7C3 analog was able to quickly enhance neurogenesis to a much greater level than a wide spectrum of currently marketed anti-depressant drugs."

Based on the study’s behavioral findings, researchers believe that individuals with depression associated with chronic stress or with altered ghrelin levels or ghrelin resistance, as has been described or theorized for conditions such as obesity and anorexia nervosa, might be particularly responsive to treatment with highly neuroprotective drugs, such as the P7C3 compounds.

Future studies will examine the ability to apply these findings to other forms of depression, including the possibility of developing clinical trials aimed at identifying whether or not P7C3 compounds have anti-depressant effects in people with major depression, as predicted. The three main types of depressive disorders include major depression, dysthymia, and bipolar disorder.

neuromorphogenesis:

Brain Mapping

A new map, a decade in the works, shows structures of the brain in far greater detail than ever before, providing neuroscientists with a guide to its immense complexity.

Neuroscientists have made remarkable progress in recent years toward understanding how the brain works. And in coming years, Europe’s Human Brain Project will attempt to create a computational simulation of the human brain, while the U.S. BRAIN Initiative will try to create a wide-ranging picture of brain activity. These ambitious projects will greatly benefit from a new resource: detailed and comprehensive maps of the brain’s structure and its different regions.

As part of the Human Brain Project, an international team of researchers led by German and Canadian scientists has produced a three-dimensional atlas of the brain that has 50 times the resolution of previous such maps. The atlas, which took a decade to complete, required slicing a brain into thousands of thin sections and digitally stitching them back together with the help of supercomputers. Able to show details as small as 20 micrometers, roughly the size of many human cells, it is a major step forward in understanding the brain’s three-dimensional anatomy.

To guide the brain’s digital reconstruction, researchers led by Katrin Amunts at the Jülich Research Centre in Germany initially used an MRI machine to image the postmortem brain of a 65-year-old woman. The brain was then cut into ultrathin slices. The scientists stained the sections and then imaged them one by one on a flatbed scanner. Alan Evans and his coworkers at the Montreal Neurological Institute organized the 7,404 resulting images into a data set about a terabyte in size. Slicing had bent, ripped, and torn the tissue, so Evans had to correct these defects in the images. He also aligned each one to its original position in the brain. The result is mesmerizing: a brain model that you can swim through, zooming in or out to see the arrangement of cells and tissues.

At the start of the 20th century, a German neuroanatomist named Korbinian Brodmann parceled the human cortex into nearly 50 different areas by looking at the structure and organization of sections of brain under a microscope. “That has been pretty much the reference framework that we’ve used for 100 years,” Evans says. Now he and his coworkers are redoing ­Brodmann’s work as they map the borders between brain regions. The result may show something more like 100 to 200 distinct areas, providing scientists with a far more accurate road map for studying the brain’s different functions.

“We would like to have in the future a reference brain that shows true cellular resolution,” says Amunts—about one or two micrometers, as opposed to 20. That’s a daunting goal, for several reasons. One is computational: Evans says such a map of the brain might contain several petabytes of data, which computers today can’t easily navigate in real time, though he’s optimistic that they will be able to in the future. Another problem is physical: a brain can be sliced only so thin.

Advances could come from new techniques that allow scientists to see the arrangement of cells and nerve fibers inside intact brain tissue at very high resolution. Amunts is developing one such technique, which uses polarized light to reconstruct three-­dimensional structures of nerve fibers in brain tissue. And a technique called Clarity, developed in the lab of Karl Deisseroth, a neuroscientist and bioengineer at Stanford University, allows scientists to directly see the structures of neurons and circuitry in an intact brain. The brain, like any other tissue, is usually opaque because the fats in its cells block light. Clarity melts the lipids away, replacing them with a gel-like substance that leaves other structures intact and visible. Though Clarity can be used on a whole mouse brain, the human brain is too big to be studied fully intact with the existing version of the technology. But Deisseroth says the technique can already be used on blocks of human brain tissue thousands of times larger than a thin brain section, making 3-D reconstruction easier and less error prone. And Evans says that while Clarity and polarized-light imaging currently give fantastic resolution to pieces of brain, “in the future we hope that this can be expanded to include a whole human brain.”

We now know that 24 hours without sleep, or a week of sleeping four or five hours a night induces an impairment equivalent to a blood alcohol level of .1 percent. We would never say, ‘This person is a great worker! He’s drunk all the time!’ yet we continue to celebrate people who sacrifice sleep for work.

neurosciencestuff:

A recently FDA-approved device has been shown to reduce seizures in patients with medication-resistant epilepsy by as much as 50 percent. When coupled with an innovative electrode placement planning system developed by physicians at Rush, the device facilitated the complete elimination of seizures…

spaceexp:

The milky way from Point Lookout, Maryland

Source: absentious (reddit)

neurosciencestuff:

Chimpanzees may throw tantrums like toddlers, but their total brain size suggests they have more self-control than, say, a gerbil or fox squirrel, according to a new study of 36 species of mammals and birds ranging from orangutans to zebra finches.

image

Scientists at Duke University, UC Berkeley,…

spaceexp:

Surface of Mars, as seen from space

pennyfornasa:

Astronauts and cosmonauts—while getting to play with multibillion-dollar toys in space—also have an incredibly unique chance to view the Earth from a completely different perspective than many of us.

This perspective creates a newfound appreciation for our pale blue dot, as philosopher David Loy describes:

“To have that experience of awe is to, at least for the moment, let go of yourself, to transcend the sense of separation. So it’s not just that they were experiencing something other than them, but that they were, at some very deep level, integrating and realizing their interconnectedness with that beautiful blue-green ball.”

To the observer, borders seem to disappear as countries flow seamlessly into one another. Like a singular organism, Earth becomes something more than a map of divisions based upon ideology and geography.  Those who share this vantage point see Earth as one ecosystem, with all parts artfully woven together to create a perfect home for millions of plant and animal species. Conflicts between nations become less apparent, and the need for a united planetary society to protect our beautiful home becomes increasingly obvious and imperative.

This realization of the interconnectedness of all life on Earth and the need to protect it, dubbed the Overview Effect, has been reported among astronauts from the Apollo program all the way through to the current International Space Station astronauts.

Astronauts are counted among the few who get to observe the Earth from the outside with the naked eye. For those of us on the surface, NASA continues to release stunning images and video from their Earth-orbiting spacecraft. Let’s keep their funding coming, so that all of humanity has the chance to learn about the importance of our beautiful home in space! http://www.penny4nasa.org/take-action/

Watch the short documentary “Overview” by The Planetary Collective, featuring commentary from experts and former Astronauts! http://vimeo.com/55073825

Visit Planetary Collective’s website: http://www.planetarycollective.com/
Planetary Collective FB: https://www.facebook.com/planetarycollective
Planetary Collective Twitter: https://twitter.com/WeArePlanetary

#NASA   #Penny4NASA   #Space   #Earth   #TheOverviewEffect   #ISS   #EarthDay  #EarthDay2014  

(via scinerds)

spaceplasma:

Gemini 4

The Gemini program was designed as a bridge between the Mercury and Apollo programs, primarily to test equipment and mission procedures in Earth orbit and to train astronauts and ground crews for future Apollo missions. The general objectives of the program included: long duration flights in excess of of the requirements of a lunar landing mission; rendezvous and docking of two vehicles in Earth orbit; the development of operational proficiency of both flight and ground crews; the conduct of experiments in space; extravehicular operations; active control of reentry flight path to achieve a precise landing point; and onboard orbital navigation. Each Gemini mission carried two astronauts into Earth orbit for periods ranging from 5 hours to 14 days. The program consisted of 10 crewed launches, 2 uncrewed launches, and 7 target vehicles, at a total cost of approximately 1,280 million dollars.

Gemini 4 was the second crewed mission of the Gemini series and carried James McDivitt and Edward White on a 4-day, 62-orbit, 98-hr flight from June 3 to June 7, 1965. The mission included the first American spacewalk. The objective of the mission was to test the performance of the astronauts and capsule and to evaluate work procedures, schedules, and flight planning for an extended length of time in space. Secondary objectives included demonstration of extravehicular activity in space, conduct stationkeeping and rendezvous maneuvers, evaluate spacecraft systems, demonstrate the capability to make significant in-plane and out-of-plane maneuvers and use of the maneuvering system as a backup reentry system, and conduct 11 experiments.

Credit: NASA/JSC/Arizona State University